
	

APPLYING DDS TO THE GAMING FLOOR

WHITE PAPER

July 28, 2019

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 2

Introduction

Communications on gaming floors continues to challenge the industry. Managing
communications between thousands of gaming machines and many disparate
systems has proven to be a difficult and complex task. The G2S protocol was one
attempt at a solution to this problem. However, the level of effort required to
implement the core communications, security, and data delivery requirements has
hampered adoption.

This paper looks at an alternative approach to communications, security, and data
delivery – Data Distribution Service (DDS). It is a middleware protocol and API for
data-centric connectivity managed by the Object Management Group (OMG). DDS
handles communications, security, and data delivery allowing developers to focus
internally on their applications rather than externally on communications with other
endpoints. It isolates the applications from the complexities of communications,
security, and data delivery. They can change and evolve without impacting the
applications.

This paper provides an overview of DDS, explaining what DDS is and how it works,
and then looks at how G2S-like functionality could be implemented using DDS. Much
of the information about DDS was borrowed from OMG’s website (www.dds-
foundation.org). Further information about DDS can be found on that site.

What Are the Benefits of DDS?

Adoption of DDS as the middleware for communications on casino floors would result
in a series of benefits for the gaming industry. Most of these benefits result from
using off-the-shelf middleware for communications, security, and data access rather
than proprietary industry-specific middleware. Secondary benefits come from the
native communications patterns built into DDS – publish-subscribe and request-
response – which do not have to be built into applications.

• Faster Development. Suppliers would not have to worry about
communications, security, and data access or managing the publish-subscribe
and request-response communications patterns.

• Focus on Applications. Suppliers could focus on their applications rather

than the infrastructure needed to communicate with hundreds or thousands of
nodes on a gaming floor.

• Independent Control. Security and data access would be managed

independently of the products on the gaming floor, placing management of
the gaming floor in the hands of the operator.

• Unfettered Access. Data access would be controlled through DDS rather
than proprietary systems, giving operators complete control of the data.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 3

• More Data. Data would be delivered by DDS rather than proprietary
systems, giving operators access to the full spectrum of data offered by
EGMs.

• Open Gaming Floor. The infrastructure surrounding communications,
security, and data access would not be a barrier-to-entry to the gaming floor,
giving operators more choice and making in-house development easier.

• Level Playing Field. No supplier would have any advantage over any other

supplier due to control of the infrastructure on the gaming floor.

The net result would be lower development costs, faster speed-to-market, fewer
barriers-to-entry, more product availability, and increased revenues for suppliers and
operators.

What Is DDS?

DDS integrates the components of a system together, providing low-latency data
connectivity, extreme reliability, and a scalable architecture that is needed by
business and mission-critical applications.

DDS is the software layer that lies between the operating system and the
applications. It allows the various components of a system to more easily
communicate and share data. It simplifies the development of distributed systems by
letting software developers focus on the specific purpose of their applications rather
than the mechanics of passing information between applications and systems.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 4

DDS provides QoS-controlled data-sharing. Applications communicate by publishing
and subscribing to Topics. Subscribers can specify time and content filters and, thus,
get only a subset of the data being published on a Topic and only when it is needed.

There are many communications middleware standards and products. DDS is uniquely
data centric. DDS knows what data is stored in Data Writers and controls how to share
that data with Data Readers. There is no broker or central data distribution system
like those used with other technologies, such as message queues. DDS is a purely
distributed system.

Conceptually, DDS looks like a local data store called the global data space. To the
application, the global data space looks like native memory. It is accessed via a local
API. You write to what looks like your local storage. In the background, DDS sends
messages to update the appropriate data stores on remote nodes. The remote nodes
read from what looks like local storage.

Each node stores only what it needs and only for as long as it needs it. DDS deals
with data in motion. The global data space is a virtual concept; in reality, it is only a
collection of local stores. Every application sees the data in local memory in its
optimal native format. DDS shares data between embedded, mobile, and cloud
applications across transports, regardless of language or operating system, and with
extremely low latency.

DDS provides dynamic discovery of Data Writers and Data Readers. Endpoints do not
have to be configured into applications. They are automatically discovered by DDS.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 5

This is completed at run time, not at design or compile time, enabling true “plug-
and-play” for DDS applications.

DDS will discover if an endpoint is publishing data, subscribing to data, or both. It
will discover the Topics being published or subscribed to. It will also discover the
publisher’s offered communication characteristics and the subscriber’s requested
communications characteristics, using these attributes during the dynamic discovery
to match DDS participants.

Quality of Service (QoS) constraints include reliability, durability, timeliness, and
liveliness (system health). Every endpoint does not need every item in the global
data space. DDS is smart about sending just what it is needed when it is needed. If
messages don’t reach their intended destinations, DDS enforces the reliability
constraints for the Topic. When systems change, DDS dynamically figures out where
to send which data and intelligently informs participants of the changes. When
updates need to be fast, DDS sends multicast messages to update many remote
endpoints at once. Use of multicast groups allows routers to only forward multicast
messages to endpoints that have subscriptions to the groups. When security is
needed, DDS limits access to Topics and encrypts data on-the-fly.

DDS was developed for the Internet of Things (IoT). It was designed to manage
communications and data delivery amongst many thousands of endpoints in real-
time with very low latency. It is used by many industries developing mission-critical
and business-critical applications. These applications include air traffic control, smart
cars, power distribution, medical devices, industrial automation, launch control
systems, and combat management systems.

OMG is supported by approximately 350 suppliers and users of products that
incorporate OMG’s standards. These include AT&T, Bloomberg, Boeing, Ford, General
Dynamic, General Electric, Goldman Sachs, HP, IBM, Microsoft, MITRE, NASA,
Oracle, SAP, and Thales.

How Does DDS Work?

Conceptually, DDS is quite simple. It relies on a small handful of core concepts.

• Domain – A Domain is the global data space. Different Domains are
completely independent from each other. There is no data-sharing across
domains. A Topic in one Domain may represent something completely
different in another Domain, even if they share the same Name. However, an
application can participate in multiple domains. Domains can be sub-divided
into Partitions when necessary.

• Topic – Participants publish and subscribe to Topics. Data Writers publish

data to Topics by writing the data to local data stores. Data Readers receive
data from Topics by reading from local data stores. DDS moves data between
the local data stores. Each Topic has a Name, Data Type, and QoS. The Data
Type can be an XML element, a JSON object, or some other type of data
structure. They can be quite large and complex when necessary or as simple
a single value. The QoS defines the reliability, durability, timeliness, and
liveliness requirements for the Topic.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 6

• Instance – An Instance is an occurrence of a Topic. There can be multiples

Instances of a Topic within a Domain and multiple Instances on a participant.
Participants create, update, and delete instances as needed. It is possible to
restrict a Topic to a single Instance; this may be useful for setting global
parameters. When multiple instances are allowed, parameters within the Data
Type are formed into a unique Key for Instances of the Topic. Subscribers to a
Topic are alerted by DDS when Instances are created, updated, or removed.
The data associated with a new Instance automatically becomes part of the
subscriber’s local data store.

• Sample – A Sample is a snapshot of the data within an Instance. Samples

are communicated between Data Writers and Data Readers. The local data
store of a participant may contain multiple Samples of an Instance. For
example, a local data store could contain two samples of meter information –
the current and previous meter readings.

It’s easy to draw an analogy between these concepts and a relational database.

• The Domain is equivalent to the database.
• A Topic is equivalent to a table in the database.
• An Instance is equivalent to a record in the table.
• A Sample is a copy of the record at a point in time.

For example, GSA could define a “gaming” Domain (the database). In that Domain,
GSA could also define a “meters” Topic (a table) to report meter information from

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 7

Electronic Gaming Machines (EGMs). The unique Key for the “meters” Topic could be
the EGM Identifier, Class Identifier, and Device Identifier. In practice, there would be
multiple Instances (records) of the “meters” Topic – one Instance for each class and
device in an EGM. These could be created in real-time as needed. When the contents
of an Instance changed, a Sample (copy) of the Instance would be communicated
between the Data Writer for the Instance and the Data Readers.

What Is Quality of Service (QoS)?

QoS is a very important part of DDS. It controls the delivery of data between
participants. Amongst other things, it defines the required reliability, durability,
timeliness, and liveliness behavior for a Topic. DDS takes care of these problems, not
the application. In total, there are over 20 parameters involved. These are called
policies. Important policies include:

• Reliability – The Reliability policy determines whether guaranteed or best-
effort delivery is used between Data Writers and Data Readers.

• History – The History policy controls how many Samples of an Instance are

retained by DDS. Two options are available “keep all” or “keep last”. When
“keep last” is used, a depth value is also specified – for example, the last 10
Samples. The “keep all” option does not imply that DDS will store Samples
indefinitely. The Resource Limits and Lifespan policies also come into play.

• Resource Limits – The Resource Limits policy configures the amount of

memory a Data Writer or Data Reader may allocate to its local data store for
a Topic.

• Lifespan – The Lifespan policy specifies how long DDS should consider a

Sample to be valid. Once a Sample is no longer considered valid, it is
discarded.

• Deadline - The Deadline policy specifies the maximum elapsed time between
Samples from a Data Writer – that is, the frequency at which data is
published.

• Time-Based Filter – The Time-Based Filter policy sets the minimum elapsed

time before a new Sample is provided to a Data Reader – that is, the
frequency at which data is received. Excess Samples are discarded or not
sent.

• Content Filter – The Content Filter policy contains predicates (the equivalent

of SQL “where” clauses) that are applied to Samples. Only Samples that
satisfy the policy are delivered to Data Readers.

• Liveliness – The Liveliness policy specifies the mechanism that will be used

by Data Readers to detect when Data Writers become disconnected or dead.
Two options are available: automatic or manual. Automatic is a simple ping
mechanism between the Data Readers and Data Writers. Manual requires that
the Data Writer application initiate the ping and that the Data Reader
application respond.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 8

• Partition – The Partition policy adds additional requirements for matching

Data Writers to Data Readers for a Topic, allowing a Domain to be divided
into subsets. Date Writers are only matched to Data Readers if their Partitions
intersect – for example, if an EGM is participating in a specific progressive
jackpot. Different Partitions can be associated with different multicast groups
so that routers only send data to interested Data Readers.

For a Data Reader to be matched by DDS with a Data Writer, the Name and Data
Type of the Topics must be the same. In addition, the QoS offered by the Data
Writer must be greater than or equal to the QoS requested by the Data Reader. For
example, if the Data Writer offers best-effort Reliability but the Data Reader requests
guaranteed Reliability, the Data Writer and Data Reader will not be matched; best-
effort delivery is a lower QoS than guaranteed delivery. Once a Data Reader has
been matched with a Data Writer, DDS will manage the delivery of Samples to the
Data Reader per the QoS policies of the Data Reader.

Over time, new versions of Topics can be introduced to a Domain. This can be
accomplished by introducing new Data Types for a Topic or by simply using the
native extensibility model for the underlying data structures to extend the Data Type
for a Topic.

When developing a DDS-based solution, the key role for a standards-setting
organization, such as GSA, is in the definition of the Domains, Topics, Data Types,
and QoS policies for Data Writers of the Topics. The focus is on the data; it is data-
centric, allowing easy integration between endpoints. This is very much like the work
that GSA does today defining the data models used in its other standards, such as
G2S.

What Patterns Are Supported by DDS?

Two of the communications patterns supported by DDS – publish-subscribe and
request-response – would be ideally suited for transitioning a gaming floor to DDS.
These patterns are similar to patterns currently used in G2S.

• Publish-Subscribe – Publish-subscribe is an ideal way to distribute meters,
events, status, configuration, and log information from EGMs to systems.
EGMs simply need to expose the appropriate Data Writers, updating their
local data stores when necessary. Systems create corresponding Data
Readers, with appropriate Time-Based and Content Filters, and then read the
information from their local data stores as it becomes available. DDS handles
the distribution of the data to the Data Readers.

• Request-Response – Request-Response is an ideal way to manage remote

configuration, software download, and monetary transactions. Clients simply
need to write their requests to the appropriate Request Topic. DDS RPC will
deliver the requests to the appropriate servers and bring back their replies,
delivering the replies to the local data store of the clients.

Publish-subscribe is the simpler pattern. It is achieved by simply writing Samples to
a Topic. The Data Writer publishes the Samples to the Topic. DDS delivers the

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 9

Sample to any Data Readers that have subscribed to the Topic, applying Time-Based
Filters and Content Filters along the way. The Samples appear in the local data store
of the Data Readers.

Meta-information tells the application which Samples have been read by the
application (Sample State) and whether a Sample is a new Instance or an update
(View State). The application can either read or take the Samples. Taking removes
the Samples from the local data store; reading leaves the Samples in the local data
store. If not taken by the application, policies such as History, Resource Limits, and
Lifespan control how long the Samples will remain in the local data store of the Data
Reader.

The request-response pattern is built on top of the publish-subscribe pattern. Under
the covers, there are two Topics: the Request Topic and the Response Topic. The
client, which is making the request, publishes the request to the Request Topic. The
request is delivered by DDS to the server, which processes the request. The server
publishes its reply to the Response Topic. DDS delivers the reply back to the client.

Unfortunately, the underlying publish-subscribe pattern, does not address all
problems that can arise when using the request-response pattern. For example, the
publish-subscribe pattern by itself does not address message correlation (matching
replies to requests), exception handling, and time-outs. Solutions to these problems
need to be built into the application layer. Alternatively, DDS RPC can be used.

DDS RPC provides a standard approach to implementing the request-response
pattern on top of the publish-subscribe pattern. By introducing a standard
methodology, DDS RPC shields applications from many of the complexities of the
request-response pattern, helping to simplify implementations and leading to more
consistent implementations of the publish-subscribe pattern.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 10

Can You Give Me an Example?

Let’s look at how the functionality in the G2S voucher class (ticket-in-ticket-out)
would be implemented in DDS. The G2S voucher class is a good example because it
touches upon all the standard building blocks of G2S.

• Profile – The current configuration of a device.
• Status – The current state of a device.
• Meters – The current values of the meters for a device and class (all devices

in total).
• Logs – The transaction history for a class (all devices).
• Events – Changes to the profile, status, meters, and logs.
• Commands – EGM-originated and host-originated requests.

In DDS, each of these building blocks would become a Topic or RPC. The Data Types
for the Topics and RPCs would be very similar to the XML data structures used in
G2S (in some cases, they might be identical).

• voucherProfile – There would be one Instance of this Topic for each voucher
device. Every time there was a change to the profile of a device, a new
Sample would be published to DDS. The unique key for the Topic would be
EGM Identifier, Device Class, and Device Identifier.

• voucherStatus – Like the profile, there would be one Instance of this Topic

for each voucher device. Every time there was a change to the status of a
device, a new Sample would be published to DDS. The unique key for the
Topic would be EGM Identifier, Device Class, and Device Identifier.

• voucherMeters – There would be multiple Instances of this Topic – one

Instance for each voucher device and one Instance for the voucher class in
total. Every time there was a change to the meters for a device, a new
Sample would be published to DDS for the device and for the class in total.
The unique key for the Topic would be EGM Identifier, Device Class, and
Device Identifier. As in G2S, Device Identifier 0 (zero) would identify the
meters for the class in total.

• voucherLog – There would be multiple Instances of this Topic – one Instance
for each transaction in the voucher class. Every time a new transaction was
started, a new Instance would be created and then a Sample would be
published to DDS. Subsequently, as the state of the transaction changed, the
Instance would be updated, and then additional Samples would be published.
The unique key for the Topic would be EGM Identifier and Transaction
Identifier.

• voucherEvent – Like the log, there would be multiple Instances of this Topic
– one Instance for each event in the voucher class. Every time an event was
generated, a new Instance would be created and then a Sample would be
published to DDS. The unique key for the Topic would be EGM Identifier and
Event Identifier.

• voucherEgmRequest – This RPC would be used by EGMs (acting as clients)
to send requests to a host (acting as the server). The requests would be

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 11

equivalent to the G2S getValidationData, issueVoucher, redeemVoucher, and
commitVoucher commands.

• voucherHostRequest – This RPC would be used by a host (acting as the
client) to send requests to EGMs (acting as servers). The requests would be
equivalent to the G2S setVoucherState and setVoucherLockOut commands.

The QoS for the Topics would be designed to match the requirements of G2S. In
general, guaranteed delivery, as well as data persistence, would be required for all
Topics. The History policy for logs and events would be set to depths equivalent to
those used by G2S.

How Is DDS Secured?

DDS Security is an add-on to DDS in much the same way that TLS is an add-on to
HTTP. DDS Security can be added at any time to secure some or all the Topics in a
Domain. It plugs into DDS. Applications can be fully developed without DDS Security
in place. DDS Security can be added and configured in the field as necessary.
Security is part of DDS, not the applications.

DDS Security uses a standard Public Key Infrastructure (PKI) and X.509 v3
certificates to identify and authenticate the participants in a Domain. A trusted
Certificate Authority is used to sign, authenticate, and revoke the certificates of
participants. This is very similar to the security model used by G2S.

On top of this, DDS Security uses two XML-based documents to control access to
Topics.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 12

• Domain Governance Document – The Domain Governance Document

contains the global set of rules for the for the Domain. All participants must
abide by these rules.

• Participant Permissions Document – The Participant Permissions

Document contains the participant’s permissions for the domain, allowing the
participant to publish or subscribe to specific Topics.

Similar participants, such as EGMs, can share a common set of permissions.
Alternatively, a different set of permissions can be constructed for each participant.
In a gaming network, each server would probably have its own set of permissions
tuned to its specific functional needs while EGMs would share a common set of
permissions based on operator and jurisdictional needs.

A trusted Permissions Authority is used to sign the Domain Governance and
Participant Permissions Documents. These documents are then installed on the
participants along with the X.509 v3 certificates that are used to identify and
authenticate the participants. To help simplify implementations, the Certificate
Authority can also act as the Permissions Authority.

How Is Persistence Achieved?

Data persistence is typically viewed as a service. When needed, the service is called
by a Data Writer and the relevant data is stored in persistent memory. Essentially,
the service acts as a subscriber to the data, storing the data on disk or other type of
persistent media. The service can be local to the participant or it can be remote. The
service is responsible for “re-publishing” the data to late-joining subscribers – that is,
subscribers that were not active when the data was first published.

Each DDS implementor must decide where to host the service. In theory, a single
network-based service could provide persistence services to an entire Domain.
However, for fault-tolerance and efficiency, usually the persistence service is hosted
locally on each participant.

Will DDS Products Interoperate?

DDS is unique in that it standardizes both the API used by the application to access
DDS as well as the wire protocol between participants. The standardized API
provides portability of applications between DDS suppliers. The standardized wire
protocol ensures interoperability between different DDS suppliers.

Other technologies provide a standardized wire protocol, but not a standardized API.
DDS provides both. Suppliers compete based on the efficiency and performance of
their DDS implementations, not proprietary extensions to the DDS API or the wire
protocol.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 13

How Does DDS Scale?

Thousands of Data Writers can easily overwhelm a single Data Reader. Thus,
strategies are needed to scale applications as the number of Data Writers grows.
Typically, this is done by subdividing a large Domain into a series of smaller sub-
Domains and then providing separate front-end systems for each sub-Domain. The
front-end systems dispatch critical data and transactions to back-end application
systems. This is similar to the strategy used on gaming floors today when site
controllers and floor controllers are used to divide the workload across multiple front-
end systems.

Other strategies may be available from DDS suppliers to deal with scaling issues,
such as load-balancing, discovery, and routing. These are designed to deal with the
realities of large networks and to improve the level of fault tolerance in the networks.
These are features of the supplier’s DDS implementation and, thus, do not impact
the DDS API or the wire-protocol.

	

	

	

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 14

What Does the Product Landscape Look like?

DDS is a software product. Typically, the DDS software runs natively on the
participant – for example, on the EGM or back-end system. In the case of back-end
systems, an implementor may choose to run DDS on a dedicated server and then
dispatch data and critical transactions to an existing back-end application system.
This could be the same application system that is communicating with EGMs that use
SAS or G2S.

OMG’s website lists a number of DDS suppliers including Adlink (a GSA member),
Real-Time Innovations, and Twin Oak Computing. DDS suppliers typically offer two
basic types of products – DDS development tools (SDKs) and DDS run-time engines.
The tools and run-time engines are available for most popular languages and
platforms.

The suppliers may also offer specialized add-on applications that help improve DDS
efficiency and performance, such as routing and discovery services. These product
offering vary by supplier and may be specific to their DDS implementation.

There are different pricing options available, but typically users of DDS pay for the
development tools on an annual basis based on the number of seats required. Pricing
of the run-time engines varies from completely free (without support) to a fixed
annual price per device, which typically varies depending on the quantity of devices.
There may be additional annual fees for add-on products, such as discovery and
routing services.

For example, you might expect to pay $5,000 per year per developer for the DDS
development tools plus $10 per device for each fully support run-time license (run-
time licenses without support are free). An add-on discovery and routing service
might cost an additional $3,000 per year.

	

Gaming Standards Association © 2019 – Applying DDS to the Gaming Floor 15

	

1998 - 2018

YEARS

