rad

lue

Quick Start for G2S
Implementation Guide

radblue G2S Quick Start
Table of Contents

L] T= o1 =T e PN 2
About Quick Start for G2S.......ociieiiiiiii 2
1S10]0] 0 o] (Yo [N @(o] 111 1= oo 3PP 3
Quick Start Implementation. 3
Quick Start Deployment ..o e 4
DTS 11 o Y 4
Development Configurationcc.veiuiiiiiiiiii 5
Quick Start for G2S SEACKvuii i 6

L0 1= o1 =T PPN 7
Message Processing by the EGM and G2S HOSE......c.ovviiiiiiiiiiiiirneeee e 7

Outbound Message ProCESSINGcuvveuiuriiiiiiiiiisn e s s eneaes 7
Outbound CommMAaNd FIOW.cuiuiiiiiii e 8
Inbound Message ProCESSINGuueieeiieieeiie et eae e e e e en e e renennans 9
Inbound CommMaNd FIOW.cuvuieieieieiee e e e e e e e e e e e eaennans 11
Class SEqUENCE FIOWSvviiiiieeies s e e s s s e e e s e r s a s e n e e e eanannnns 12

Chapler 3 ..o 16
Getting Started.ov e 16
Import Quick Start INt0 ECPSEvvririii i 16
(0180l Q] = |l B =T o 5= PPN 18

Chapler 4 ... e 20
Run the G2S Host Demonstration Program...........ccoeoeiiiiiiiiniiieeereee e 20
Connecting throught the RadBlue System Testercccvoviiiiiiiiiiiiiiire e 20
Run the G2S EGM Demonstration Programccouviiiiniiiiniinie e 21
Connecting to RAABIUE G2S SCOPEcuivuiniiiiiitiiiiiie e e s e e eeaes 22
RUNNING UNIE TESES. ittt s e e e 23

radblue G2S Quick Start
Chapter 1

About Quick Start for G2S

The Quick Start Software Development Kit for G2S is intended for programmers who want to implement
the GSA Game-to-System (G2S) protocol in their applications.

The Quick Start SDK allows you to quickly implement either side of a G2S conversation - EGM or Host.
Through open standards and open-source modules, a programmer does not need to learn all of the
low-level G2S and web service details in order to send and receive G2S-compliant messages - Quick
Start for G2S gets you started and helps you learn to implement G2S on your own.

o

G25 Host

Application

By making use of open standards and open-source modules, a programmer does not need to learn all of
the low-level details in order to send and receive G2S-compliant messages.

‘ =
Start
3

(525 Host
Application

G25 EGM

Developers who are new to G2S can use Quick Start to quickly build a G2S application. The low-level
G2S work is already complete (through Quick Start), allowing the developer to focus on connecting in
the business logic. If an application already has existing business logic and databases completed, using
Quick Start gets you approximately 70 percent of the way toward completing an G2S implementation of
these classes in your product.

radblue G2S Quick Start

Supported Commands

Quick Start for G2S provides a limited number of commands in the Communications and Cabinet classes
as examples to help you understand how Quick Start works. These commands have been selected

specifically to allow programmers to begin communicating in G2S. The supported commands include:

Class Request (Initiatator)| Response (Responder)
Communications commsOnLine (EGM)| commsOnlineAck (Host)
Communications commsDisabled (EGM)| commsDisabledAck (Host)
Communications commsClosing (EGM)| commsClosingAck (Host)
Communications setCommsState (HOST)| commsStatus (EGM)
Communications getCommsState (HOST)| commsStatus (EGM)
Communications getDescriptor (HOST)| descriptorList (EGM)
Communications setKeepAlive (HOST)| setKeepAliveAck (EGM)
Communications keepAlive (Either)| keepAliveAck (Either)
Cabinet getCabinetStatus (HOST)| cabinetStatus (EGM)
Cabinet setCabinetState (HOST)| cabinetStatus (EGM)

Quick Start Implementation

There are two implementations of Quick Start for G2S: the G2S EGM and the G2S host. Plain Old Java
Objects (POJOs) for all of the supported G2S commands have been implemented for both the G2S EGM
and G2S Host.

The G2S EGM implementation is an example of a G2S-based EGM. It manages all of the basic G2S tasks
required of a G2S EGM. The G2S EGM implementation is the main integration point between your
business logic and G2S. If everything is done properly, your EGM application need only interacts with the
G2S EGM implementation. Everything else in G2S should be hidden from you.

The G2S host implementation is an example of a G2S-based host. It manages all of the basic G2S tasks
required of a G2S host. The G2S host implementation is the main integration point between your
business logic and G2S. If everything is done properly, your host application need only work with the
G2S host implementation. Everything else in G2S should be hidden from you.

Quick Start for G2S includes:
e an HTTP 1.1-compliant stack based on Jetty 9.x.
a SOAP 1.1 stack based on Apache CXF.
a G2S transport mechanism based on Apache CXF.
an object marshalling/unmarshalling mechanism based on JAXB 2.0.
a command dispatching mechanism that uses reflection to dispatch the received G2S commands.
the infrastructure to manage the allocation of unique identification numbers, which are required
by the G2S protocol.
e default implementations for the communications and cabinet classes.

The Quick Start .zip file contains the entire source code for the Quick Start SDK, including unit tests,
Java source code, Ant scripts and the G2S schema and WSDL files. The directory structure in the .zip is
laid out in @ manner that will be acceptable to the Eclipse IDE. You can also work with the same source
code tree outside of Eclipse, if needed.

Quick Start for G2S does not include:
e Apache CXF implements all of the SOAP security standards through the JAX-WS specification

radblue G2S Quick Start

from Sun. None of these are enabled inQuick Start but they can be through various CXF
configuration options. See the CXF documentation for more information.

There is no retry logic in the transport layer.

There is no persistent storage in the transport layer. If you shut down Quick Start, pending
messages will be lost.

Quick Start Deployment

By default, Quick Start is a stand-alone application, using Apache CXF as the SOAP stack. This includes
Jetty 9.x as the web container. Quick Start provides a Java main method that initializes the application,
starts the SOAP stack, and then waits for the application to take action. This deployment option is aimed
at stand-alone applications that can be successful with the CXF SOAP stack.

Resources

The following are sources for the resources referenced in this document:

Java Platform - The SDK makes use of the JAVA 9 platform. You can download the Java
Development Kit (JDK) directly from Sun Microsystems. https://openjdk.java.net/

JAXB - Java Architecture for XML Binding (JAXB) generates Java objects from an XML schema.
JAXB 2.0 is bundled with Java 9.

Eclipse IDE - The Quick Start SDK is supplied as an Eclipse project that can be imported into
the Eclipse Integrated Development Environment (IDE). It was developed using Eclipse 3.x
(Europa). https://www.eclipse.org/

Eclipse in Action by David Gallardo. Eclipse is an excellent IDE and a Radical Blue Gaming
standard. If you are new to Eclipse, we recommend this book.

CXF - Apache CXF is an implementation of a Simple Object Access Protocol (SOAP) stack that
generates Java objects and method calls from WSDL files. http://cxf.apache.org

Jetty Web Server - Jetty is an open-source, standards-based, full-featured web server
implemented entirely in Java. Jetty is bundled with CXF as the default web container.
https://www.eclipse.org/jetty/

G2S Message Protocol v3.1.0 Package - Available from the Gaming Standards Association.
https://www.gamingstandards.com/en/standards/g2s-game-system

GSA Point-to-Point SOAP/HTTPS Transport Specification Package - Available from the
Gaming Standards Association. https://www.gamingstandards.com/en/standards/xtp-transport

https://openjdk.java.net/
https://www.eclipse.org/
http://cxf.apache.org/
https://www.eclipse.org/jetty/
https://www.gamingstandards.com/en/standards/g2s-game-system
https://www.gamingstandards.com/en/standards/xtp-transport

radblue G2S Quick Start

Development Configuration

The following is a view of your Java application running in a development (Jetty)
environment:

In G2S there are two marshalling and unmarshalling steps. An inbound message is unmarshalled from a
SOAP string into a Java string. This transformation is defined in the G2S WSDL file.

Then the Java string is unmarshalled into a message POJO. This transformation is defined in the G2S
XSD file.

The reverse transformations happen when a G2S command POJO is sent out
through the SOAP stack.

radblue G2S Quick Start

Quick Start for G2S Stack

Quick Start for G2S provides an API to G2S, allowing anyone to write a G2S EGM or a G2S host
application. To this end, your application interacts with less than 10 percent of Quick Start . For this

reason, Quick Start is written as a vertical stack.
Java Conversion to G2S XML ————» -

The layers in blue are provided by the RQS. Your layer, at the very top, uses the API layer to invoke the
Quick Start services.

Transport

Note If you find yourself interacting with any layer other than the API layer,
contact RadBlue.

radblue G2S Quick Start

Chapter 2

Message Processing by the EGM and G2S Host

Outbound Message Processing

The following section shows the path an outbound G2S message follows as it works its way through the
G2S EGM or the G2S host.

API Layer

The EGM and host each have an API that maps methods directly to G2S commands (for
example, the sending of the commsOnLine message). Each API method takes all of the data
necessary to complete the command. The application logic invokes the API method with the
correct arguments. The API implementation takes the arguments and creates a command
instance for the appropriate command, passing in all of the given arguments. The result of this
is a G2S command POJO. The POJO is then passed to the transport layer.

Transport Layer
The transport layer is responsible for handling all outbound SOAP communication. The

transport layer determines where the message should be delivered and passes it to an instance
of the SOAP layer which is configured to talk to the remote destination.

SOAP Layer

The SOAP layer is responsible for physically delivering the G2S message. The SOAP layer first
converts the G2S command POJO to an XML String by using JAXB. The result is an XML string
that is valid against the G2S schema.

The SOAP layer then uses Apache CXF to invoke the remote SOAP method in the remote G2S
host. Apache CXF uses the G2S WSDL to properly marshall the G2S command and the G2S
ACK. Using the SOAP standard, the SOAP layer connects to the G2S host, exchanges the G2S
message, and waits for the G2S acknowledgement (ACK).

radblue G2S Quick Start

Outbound Command Flow

1. Using the EGM or host API your application invokes the appropriate API method, passing in all
required data.

2. The API builds the appropriate G2S command POJO.

3. The API passes the G2S command POJO to the transport layer.

4. The transport layer converts the G2S command POJO to a DOM using JAXB.
5. The transport layer validates the DOM against the G2S schema.

6. The transport layer converts the DOM to an XML string and then uses Apache CXF to deliver
the G2S message to the remote G2S host.

7. The G2S ACK is returned from the G2S host back to transport layer. Note that a response
must be sent within 30 seconds, or the transport layer returns a time-out exception.

radblue G2S Quick Start

Inbound Message Processing

The following section shows the path an inbound G2S message follows as it works
its way through the G2S EGM or the G2S host.

Web Container
The web container implements the HTTP 1.1 standard. It is responsible for handling all of the
socket issues, the handshaking and any SSL. Once the web container receives the SOAP
request, it passes the request to the SOAP stack.

SOAP Stack
The SOAP stack, working with the web container, enforces the parsing and the validation of the
G2S WSDL. The SOAP stack parses out the G2S payload from the incoming SOAP request and
matches the received parameters against the WSDL method name. The SOAP stack then
invokes the appropriate method in the SOAP service implementation.

The SOAP service implementation is the boundary between the generic SOAP stack and the
custom business logic needed to execute G2S. The service accepts the parameters from the
SOAP stack, validates the data and then processes the message.

To process the G2S message, the SOAP service uses the Java API for XML to convert the G2S
message string to a (Document Object Model) DOM object. It then uses the Java API for XML
Validation to validate the DOM object against the G2S schema. Any errors in this process are
reported as errors in the G2S acknowledgement message (ACK).

Once the DOM is parsed and validated, it is wrapped in a G2S message POJO. This POJO
encapsulates the DOM so that it can be processed by the dispatch layer. The service queues up
the G2S message POJO into the dispatch layer for further processing. Now that the
responsibility for the G2S message has been accepted, the SOAP service generates the
appropriate G2S ACK and returns that to the SOAP stack, which in turn returns it to the caller
through the web container.

Dispatch Layer
The dispatch layer is responsible for converting the G2S message POJO to a G2S command
POJO. This is done through the Command Factory. The Command Factory examines the G2S
message POJO (which usually contains just one command of the possible 500+ commands in
G2S) and converts the data to a single G2S command POJO.

The command POJO is a key concept in that it saves the upper layers of the application from
having to understand the actual construction of a G2S message. Without the Command Factory,
the business logic layer would have to contain a huge amount of code that searched for the
command to process.

Once the G2S command POJO is created, it is double-dispatched to update the EGM data model.
The EGM data model is a data structure that maintains the current state of the EGM, either on
the EGM or the host. G2S is designed to make this model agree on both sides of the
conversation. RQS does this by using the same data structure in both implementations.

Once the dispatch layer has updated the EGM data model, it passes the command POJO to the
application layer.

Application Layer

The top and final layer of the application is responsible for any extended or extra processing. A

9

radblue G2S Quick Start

number of commands in G2S are merely for updating the data model and usually do not impact
the business logic of the application. In these instances, the command can be ignored.
However, for some commands, once the data model is updated, additional logic (like database
lookups or updates) need to performed. This is so the proper response can be generated. This
business logic is encapsulated here, at the top-most layer of the application.

10

radblue G2S Quick Start

Inbound Command Flow

1. The G2S message arrives through the SOAP stack.

2. The G2S ACKis crafted and returned.

3. The Dispatch Layer converts the G2S message to a G2S message POJO, using JAXB.

4. The Dispatch Layer converts the message POJO to a command POJO.

5. The command POJO is dispatched to update the data model.

6. Your application is notified by the Dispatch Layer by the hand-off of an G2S command that

has already been parsed and in most cases processed. Your application can now take whatever
action is appropriate for the command.

11

radblue

Class Sequence Flows

G2S Quick Start

Start-up Algorithm

Host Server

-
Communication restart - Host |D, EGM
; URL, and supported G25 version
commsOnline : PR -
G25_MSX003 error [Communications Mot Online)
- commaEldnlinedck
(includes syncTimer)
cammsDisabled i
{at startup and whenever the
sync timer expiras)
- commsDisabledack
lincludes syncTimer)
-t comms.getDescriptor
(starts the exploration
process)
comms . descriptorlist
Send me keepalive commands at this frequency
(if interval is O, stop sending keephlive)
- comms ., selkeephlive
comms . setKeephlivehck =
\
- camms, setCommsstate
ble=t
comms . commsStatus [engble=rve)
keephlive =
- keephlivelAck
(if keepAlive=REQUEST)
L

12

radblue G2S Quick Start

Communications Class

Host Server

(Startup sequence

Communication restart - Host ID, EGM URL, and

supported G25 version
commsonline -

{includes syncTimer)
- cammsinlineAck

Sent at startup and whenever the sync timer expires
commnsDisabled -

_— commsDisabrledack

Starts the exploration process .
getDescriptbar

descriptorlist -

Send me keepAlive commands at this frequency

(if interval is 0, stop sending keepAlive)
- seLkeepalive

setKeepAlivelAck i

Host sets subscriptions, configures devices, etc.

- setCommssState
{enable = true)
commsStatus =
keephlive -
- keephlivefck

lif keephlive = REQUEST)

13

radblue G2S Quick Start

Host Server

EGM is shutting down

EGM is stopping communication at this date and time
{written to queue when shutting down, if possible)
commzClosing =

|

commaClosinghck

EGM's Comm device is shut down by Host

- satCommsstate
{enable = false)
commaStatus o

Host checks status of EGM Comm device

- getCommsStatus

commsStatus :

14

radblue

Cabinet Class

Host Server |

i ™y
Startup sequence (from comms class)
i i ?
- Which devices do you support? el Daae gy
Includes cabinet device with
deseriptorTisk characteristics and owner =i
v
-
Host {owner) wants to enable the EGM
Enable cabinet device and enable play
S zetlabinetitate
Current status, door statuses, and any faults
cabinetstatus -
L A
B ™
Host wants to check status
What's current device status? i
getCabinetsStatus
Current status, door statuses, last
ame information and any faults
cabinetitatus g Y g
5 v
' ™
Host (owner) wants to disable f lock out EGM
Disable EGM like this; display text i
= setCabinetState
Current status, door statuses, and
. any faults
cabinetStatus ¥ .
\ A

G2S Quick Start

15

radblue G2S Quick Start

Chapter 3

Getting Started

Import Quick Start into Eclipse

1. Open Eclipse.

2. Select Fle > Import...

T e e e e =g h g e g e s sy e

File Edit 5ocurce Refactor Mavigate Search Project Run Wi
Mew Alt+Shift+M > § k<
Open File...
pen File e, | -
[, Open Projects from File System...

Recent Files >

Close Ctrl+W
Close All Ctrl+5hift+ W link]

Save Ctrl+5 h
[z SaveAs..

Save All Ctrl+5Shift+5

Revert

fove...
Rename...

Refresh

R

Convert Line Delimiters To >

Print...

import...

Export...

C. &

Properties

Switch Workspace ¥ fbarrie_R
Restart
Exit

¥ RGM [RGM/trunk]

3. Select Existing Projects Into Workspace

16

radblue

G2S Quick Start

£ Import

Select

Create new projects from an archive file or directory,

| >

4

Select an import wizard:

w = General
& Archive File

[File System
[T Preferences

v CIC++

v = Git

5 = Gradle

5 = Install

% = Java EE

» = Maven

» = Oomph

» [= Run/Debug

= = C1IKI

-2 Existing Projects into Workspace

[} Projects from Folder or Archive

@

W

< Back

Firish

4. Select the rgs-for-g2s-src.zip archive file

17

radblue
< Import O X
Import Projects :.q‘:_
Select a directory to search for existing Eclipse projects. f ;
|
() Select root directory: Browse...
(®) Select archive file: Ch\Users\Fred'Desktop\rgs-for-g2s-src.zip ~ Browse...
Projects:
RadBlueG25QuickStart () Select All
Deselect All
Refresh
Options

Search for nested projects

Copy projects into workspace
[Close newly imported projects upon completion
[] Hide projects that already exist in the workspace

Working sets
[] Add project to working sets Mew...

Select...

&)

< Back Mext = Cancel

Quick Start Directories

G2S Quick Start

The Quick Start project (root) contains the following directories:

bin — Directory of .class files. If you are using a source code control system, exclude this
directory.

conf - files used during generation of project artifacts
src/main/c - Java Native Interfaces for GSA's Multicast transport
src/ main/includes - Includes needed for Multicast
src/main/java - Quick Start source code

src/main/resources - Resource files that are needed by Quick Start.

18

radblue G2S Quick Start

src/test/java — Quick Start unit tests.

vendor/lib — Directory where all third-party .jar files reside. This is also where the
JAXB-generated .jar files reside.

vendor/src — this is where the source code of some of the third party packages reside. Also
the source code generated by JAXB is found in here.

19

radblue G2S Quick Start
Chapter 4

Run the G2S Host Demonstration Program

A stand-alone demonstration program for the G2S host system is included with Quick Start. The
demonstration program uses Jetty as the web container, Apache CXF for the SOAP stack. You can run
the demonstration program from Eclipse.

1. Open Eclipse.

2, Open the RadBlueG2SQuickStart project

3. Right-click Host Application.launch, select Run As > Java Application.

wil Run Windum Hug
FrO TR EH G- IAS

Tesk Lst,

T AT A e knounsl

By default, the Host application listens on the following URL:
http://localhost:31101/RQS/api-services/G2SAPI
You can change that value by editing the HostConfig constructor in the application main method.

4. Click the Console tab view G2S Host messages.

Connecting through the RadBlue System Tester

If you are connecting to the G2S host implementation through the System Tester SmartEGM:
1. Modify your SmartEGM configuration file to use the following host URL:
http://localhost:31101/RQS/api-services/G2SAPI

2, Start the SmartEGM.

The SmartEGM sends the commsOnLine command to the G2S host application. The G2S host application
communicates with the SmartEGM, sending commands back and forth until both the communications
and cabinet devices are enabled.

3. Once the communications and cabinet devices are enabled, begin sending messages to the G2S host
application.

Connecting throught the RadBlue System Tester

20

radblue G2S Quick Start

If you are connecting to the G2S host implementation through the System Tester SmartEGM:

1. Modify HostA pplicationMain.java and change the arguments in the HostConfig object to use the
following URLs:

a. hostld : 1
b. hostURL : http://localhost:31101/RQS/api-services/G2SAPI

Note: Since the Quick Start and RST do not share a common certificate authority you must use
the non-SSL URL.

2. Modify your SmartEGM configuration file to use the following host URL:
http://localhost:31101/RQS/api-services/G2SAPI

3. Start the SmartEGM.

The SmarteEGM sends the commsOnLine command to the G2S host application. The G2S host
application communicates with the SmartEGM, sending commands back and forth until both the
communications and cabinet devices are enabled.

4. Once the communications and cabinet devices are enabled, begin sending messages to the G2S host
application.

Run the G2S EGM Demonstration Program

A stand-alone demonstration program for the G2S EGM is included with Quick Start. The demonstration
program uses Jetty as the web container, Apache CXF for the SOAP stack. You can run the
demonstration program from Eclipse.

1. Open Eclipse.

2. Open the RadBlueG2SQuickStart project

3. Right-click EGM A pplication.launch, select Run As > Java Application.

@ RADDLUL - Huraiworkspace-szablue - Idlipse 10 o kS
Hle Bdn Souce Refoor Mawgame Smwch Froest Ko Weecw Hel

BT E B0 L RIER G A P e Qi B
. =] sk List 5% § =0 & 2

R R]

g
m

httpse 31188,/RG apL -5
war dworkepace-radhlue Radd Lusn2sty
Jfuckspace radblue/MadBlucG2SguickStar

e L gk

2070-25-97 11:59:99,082 [0

EGM Applicationlaunch - RadBhe(250uickitat

By default, the EGM application listens on the following URL:
https://localhost: 31108/RQS/api-services/G2SAPI and connects to Host ID 1 at
https://localhost:31101/RQS/api-services/G2SAPI.

21

radblue

G2S Quick Start

You can change that value by editing the EgmConfig constructor in the application main method.

4. Click the Console tab view G2S messages.

5. The EGM application will disconnect from the host after 6 seconds and will exit.

Connecting to RadBlue G2S Scope

If you are connecting to the G2S EGM implementation to RadBlue's G2S Scope:

1. Determine the host ID and URL of RGS

7% (25 Scope (Host 1Dk 1) ‘

File ~ Tools = Help ~
i Engine | Transcripts | SendCommand | Databases | TesterToolkit
[

525 Engine

I} Start Engine

0 RGS URL

RGS is listening on these URLSs:

hitp /127 .0.0.1:31101/RGS/api-services/G25AP
hitp//192.168.1.1:31101/RGS/api-senvices/G25AR
hitp//169 254 65.204:31101/RGS/api-senvices/G2SAPI
hitp//192 168 86.31:31101/RGS/api-senvices/G2SAPI
hitp/10.1.0.152:31101/RGS/apl-services/G25AP

SSL URLs:

hitps:/127.0.0.1:31 201/RGS/api-senvices/G25AP
hitps /192 168.1.1:31201/RGS/api-services/G2SAP
hitps://169.254 65 204:31201/RGS/api-services/G25AP
hitps://192 168 .86.31:31201/RGS/api-services/G2SAR
https:/10.1.0.152:31201/RGS/api-services/G2SAPI

Host Info:
Host ID: 1

Ms ¢ Clear @ Filters [=]Export Debug Realtime Update

Remote Control URLs:
hitp/1127.0.0.1:31501/1¢
http://192.168.1.1:3130"
hitp://169.254 652043~
hitp://192.168.86.31:31¢
hitp//10.1.0.152:31501/

ScratchPad URLs:

nitp/M127.0.0.1:31501/F
hitp://192.168.1.1:3150"
hitp:/i169.254 65.204:3"
hitp:/i192.168.86.31:31:
hitp/10.1.0.152:31501/

a. Click the RGS URLs button to display the URLs that the RGS is currently using.

b. Select the non-SSL URL on the localhost (127.0.0.1).

c. Note the host ID in RGS's title bar.

Note: Since the RGS and Quick Start do not have a shared certificate you must use non-SSL

URLs.

2. Modify EgmA pplicationMain.java and change the arguments in the EGMConfig object to use the

following URLs:

a. egmURL: http://localhost:31108/RQS/api-services/G2SAPI

b. hostURL : From RGS (by default: http://localhost:31101/RGS/api-services/G2SAPI)

¢. hostld : From RGS (by default: 1)

22

radblue G2S Quick Start
3. Run the EGM application.

Running Unit Tests

Radical Blue Gaming is a proponent of Extreme Programming and the practice of writing unit tests.
Quick Start is no different. At the present time, there are 111 unit tests that exercise much of Quick
Start. We encourage you to continue this practice

as you add code to Quick Start for G2S. You can run the full suite of Quick Start unit tests by
executing the following JUnit

test:

1. Open Eclipse.
2. Click on the root of the Eclipse project (RadBlueG2SQuickStart).

3. From the menu bar, select Run > Run As > JUnit Test.

& RADBLUE - RadBlueG25QuickStart/src/main/javafcom/radblue/g2s/quickstart/host/main/HostApplicationMain.java - D:\var\workspace-radblue - Eclipse IDE - u] X
File Edit Source Refactor Mavigate Search Project Run Window Help
Hmig |@ivigie O R-A-BHE-SE S e Q E & A B
[% Package Explorer 3 07 Outline|] Task List & | @ & = O |[Z oM Application launch [] EgmApplicationMain.java [1] HostApplicationMain,java % =
{£4 Migration [Migration/trunk] A | » & RadBlueG25QuickStart » (55 srefmainfjava b 3 comuradblue.gZs.quickstarthostmain b & HostApplicationMain »
(23 RadBlue [RadBlue/trunk] e i
{4 RadBlueCore [RadB eftrunk] 17 System.setProperty("logsj.debug”, "false™);
%4 RadBlueCoreGui [RadBlueCoreGuistrunk] 18
(& RadBlueDocumentation [RadElueDocumentation/trunk] ,:
[RadBlueG25QuickStart [RadBlueG25QuickStart/trunk] s S
[srefmain/java 2 @ithrows Exception
(% src/main/resources 23 *f
(% src/test/java 24 public static void main(final Strinel1 arss) throws Evcention
B, Referenced Libraries i Hostanlicat iontin:)
B JRE System Library [current] B LI L b 5
(5 settings 28 : A . . -
: g cont Loy Final Hosthpplication apll Red jndicates that one or more tests have failed
(% docs 30 final HostConfig hostConfi Green indicates that tests were successful.
By sre 31 final G25Host host = new G§
g 32 host.start();
Gy tests B
> [vendor 34 Timelnit.SECONDS.sleep(6 *
%) -classpat 4 AM fbarrie_knowtal s I S
) fbpr PM mwegner = : it
% -project 9 1 onandyal = = = = = = =
) buildxm knowtal |2 Problems | @ Javadoc (&) Declaration | 47 Search | & Gonsole | 55 Progress |4 Call Hierarchy g JUnit 52 =]
£l EGM Application launch 42327 M fbarrie_knowtal o® &) BH| @ R
= Host Application.launch M fbarrie_knowtal Finished after 13.97 seconds
14 RAS [RAS/trunk]
b ore/trunk] Runsi 111/111 B Errors: 0 8 Failures: 0 |
oreGuiftrunk] o = - :
£i] com radblue.g2s.quickstart.common.commands.tests. TestCommandFa A = Failure Trace = (O £
fi] com.radblue.g2s.quickstart.common.commands.communications.tests
Engine/trunk] fi] com.radblue.g2s.quickstart.utils.multicast.tests. TestMTP Core [Runner: Jl
9 - fii com.radblue.g2s.quickstart.common.commands.communications.tests
fif] com.radblue.g2s.quickstart.common.commands.communications.tests
fi] com.radblue.g2s.quickstart.common.commands.cabinet.tests. TestCabir
£i] com.radblue.g2s.quickstart.utils.tests TestDoubleDispatcher [Runner: JU
runk] £t com.radblue.g2s.quickstart.utils.multicast.tests. TestMTP Utils [Runner: JL
7 unk] o y
£ TigerCore igerCore/trunk] £ii] comradblue.g2s quickstart.common commands communications tests
: v £t com.radblue.g2s.quickstart.common.commands.communications.tests ¥
< > < >
&

4. Select the JUnit Tests tab to display the JUnit view and start the progress bar.

5. Once the test is finished, look at the JUnit view, and verify the indicator bar is
green (indicating a successful test outcome).

23

	Chapter 1
	About Quick Start for G2S
	Supported Commands
	Quick Start Implementation
	Quick Start Deployment
	Resources
	Development Configuration
	Quick Start for G2S Stack

	Chapter 2
	Message Processing by the EGM and G2S Host
	Outbound Message Processing
	Outbound Command Flow
	Inbound Message Processing
	Inbound Command Flow
	Class Sequence Flows

	Chapter 3
	Getting Started
	Import Quick Start into Eclipse
	Quick Start Directories

	Chapter 4
	Run the G2S Host Demonstration Program
	Connecting throught the RadBlue System Tester
	Run the G2S EGM Demonstration Program
	Connecting to RadBlue G2S Scope
	Running Unit Tests

